Structure and function of plant aspartic proteinases.

نویسندگان

  • Isaura Simões
  • Carlos Faro
چکیده

Aspartic proteinases of the A1 family are widely distributed among plant species and have been purified from a variety of tissues. They are most active at acidic pH, are specifically inhibited by pepstatin A and contain two aspartic residues indispensible for catalytic activity. The three-dimensional structure of two plant aspartic proteinases has been determined, sharing significant structural similarity with other known structures of mammalian aspartic proteinases. With a few exceptions, the majority of plant aspartic proteinases identified so far are synthesized with a prepro-domain and subsequently converted to mature two-chain enzymes. A characteristic feature of the majority of plant aspartic proteinase precursors is the presence of an extra protein domain of about 100 amino acids known as the plant-specific insert, which is highly similar both in sequence and structure to saposin-like proteins. This insert is usually removed during processing and is absent from the mature form of the enzyme. Its functions are still unclear but a role in the vacuolar targeting of the precursors has been proposed. The biological role of plant aspartic proteinases is also not completely established. Nevertheless, their involvement in protein processing or degradation under different conditions and in different stages of plant development suggests some functional specialization. Based on the recent findings on the diversity of A1 family members in Arabidopsis thaliana, new questions concerning novel structure-function relationships among plant aspartic proteinases are now starting to be addressed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction, expression and characterization of a chimaeric mammalian-plant aspartic proteinase.

Aspartic proteinases are a well-characterized class of proteinases. In plants, all nascent aspartic proteinases possess a 100-amino-acid, plant-specific sequence (PSS) within their C-terminal lobe, presumed to possess a targeting role in vivo. In this study, the PSS domain from the Arabidopsis thaliana aspartic proteinase was inserted into porcine pepsinogen at the identical location found in n...

متن کامل

Comparative modelling of barley-grain aspartic proteinase: a structural rationale for observed hydrolytic specificity.

A model of the barley-grain aspartic proteinase (HvAP; Hordeum vulgare aspartic proteinase) has been constructed using the rule-based comparative modelling approach encoded in the COMPOSER suite of computer programs. The model was based on the high resolution crystal structures of six highly homologous aspartic proteinases. Results suggest that the overall three-dimensional structure of HvAP (e...

متن کامل

The saposin-like domain of the plant aspartic proteinase precursor is a potent inducer of vesicle leakage.

A unique feature of plant aspartic proteinase precursors is the presence of an internal domain, known as plant-specific insert, whose function is not completely understood. The three-dimensional structure of the plant-specific insert resembles that of saposin-like proteins, a group of lipid-binding proteins involved in a variety of physiological processes. Here we show that recombinant plant-sp...

متن کامل

Structural Similarities with Cellular Enzymest

INTRODUCTION ..........................................................781 Types of Proteinases .......................................................... 782 Viral Proteinases.......................................................... 783 Experimental Approaches Used in the Study of Viral Proteinases .................................................783 General Tenets That Have Emerged from the ...

متن کامل

Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance.

The Arabidopsis thaliana constitutive disease resistance 1 (CDR1) gene product is an aspartic proteinase that has been implicated in disease resistance signaling (Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., and Lamb, C. (2004) EMBO J. 23, 980-988). This apoplastic enzyme is a member of the group of "atypical" plant aspartic proteinases. As for other enzymes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of biochemistry

دوره 271 11  شماره 

صفحات  -

تاریخ انتشار 2004